Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Zool Res ; 44(3): 505-521, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2306427

ABSTRACT

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Subject(s)
COVID-19 , Rodent Diseases , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Testis , NF-kappa B/metabolism , COVID-19/veterinary , SARS-CoV-2/metabolism , Homeostasis , Fertility , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/veterinary , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Rodent Diseases/metabolism
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1284967

ABSTRACT

The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/diagnosis , Synthetic Biology/methods , Wearable Electronic Devices , Zika Virus Infection/veterinary , Zoonoses/diagnosis , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Biomarkers/analysis , Cell Engineering/methods , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Point-of-Care Testing , Zika Virus Infection/diagnosis
3.
Rev Sci Tech ; 39(2): 461-470, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-854819

ABSTRACT

In recent times, there has been an increased focus on animal health and zoonotic diseases that have the potential to trigger epidemics or pandemics that disproportionately affect the poor and most vulnerable. The recent Ebola, Zika and COVID-19 outbreaks demonstrate the devastating human, social and economic impacts of such diseases if they are not prevented or controlled, ideally at source. The risk drivers for zoonoses, which are complex and often interdependent, include climate change and related disasters, antimicrobial resistance, and anthropogenic drivers such as land-use changes and animal production practices. Understanding these drivers requires a better understanding of the ecology of zoonotic diseases at the human-animal-environment interface. Biosecurity and biosafety are critical for reducing the risk of accidental or deliberate release and should be included in risk management strategies. International frameworks for sustainable development, climate change, and disaster risk reduction have all integrated health as one of the core areas of work, calling for better preparedness and response to biological hazards and increased health system resilience. To improve their ability to prevent, prepare for, and respond to emerging and re-emerging threats, countries should address these risk drivers, taking a multidisciplinary One Health approach that involves the animal and human health and environment sectors. Cross-border cooperation is also vital, as diseases know no boundaries.


Depuis quelque temps, les maladies animales et zoonotiques font l'objet d'une attention croissante du fait de leur potentiel épidémique ou pandémique qui affecte de manière disproportionnée les populations les plus pauvres et vulnérables. Les récents foyers de maladie d'Ebola, d'infection à virus Zika et de COVID-19 démontrent les conséquences humaines, sociales et économiques dévastatrices de ces maladies en l'absence d'une prévention ou d'un contrôle idéalement exercés à leur source. Parmi les facteurs de risque de zoonoses, complexes par nature et souvent interdépendants, on peut citer le changement climatique et les catastrophes qu'il induit, la résistance aux agents antimicrobiens et les facteurs anthropiques tels que les changements dans l'utilisation des terres et les pratiques de production animale. Pour bien appréhender ces facteurs de risque il est nécessaire de mieux comprendre l'écologie des maladies zoonotiques à l'interface homme­animal­ environnement. La biosûreté et la biosécurité jouent un rôle déterminant pour réduire le risque de dissémination accidentelle ou délibérée et devraient faire partie des stratégies de gestion du risque. Tous les cadres internationaux mis en place en matière de développement durable, de changement climatique et de réduction des risques de catastrophe ont mis la santé au cœur de leur champ d'action et plaident pour une meilleure préparation et intervention face aux menaces biologiques ainsi que pour une résilience accrue des systèmes de santé. Afin d'améliorer leurs capacités de prévention, de préparation et d'intervention face aux menaces émergentes et ré-émergentes, les pays doivent s'attaquer aux facteurs de risque à travers une approche multidisciplinaire Une seule santé qui associe les secteurs de la santé animale, de la santé publique et de la protection de l'environnement. La coopération transfrontalière est également vitale car les maladies ne connaissent pas les frontières.


En los últimos tiempos se viene prestando mayor atención a la sanidad animal y a enfermedades zoonóticas capaces de provocar epidemias o pandemias que afectan desproporcionadamente a las poblaciones pobres y más vulnerables. Los recientes brotes de enfermedad causados por los virus Ebola, Zika y SRASCoV-2 (la COVID-19) ponen de manifiesto las devastadoras consecuencias humanas, sociales y económicas de tales patologías si no se logra prevenirlas o controlarlas, de ser posible en su origen. Los factores de riesgo de zoonosis, complejos y a menudo interdependientes, son en particular el cambio climático y los desastres naturales que trae consigo, las resistencias a los antimicrobianos y factores antropogénicos como la evolución de los usos del suelo y los métodos de producción animal. Para desentrañar estos factores es preciso conocer mejor la ecología de las enfermedades zoonóticas en la interfaz de personas, animales y medio ambiente. La seguridad y la protección biológicas, esenciales para reducir el riesgo de liberación accidental o deliberada, deberían formar parte de toda estrategia de gestión del riesgo. En todos los textos de referencia internacionales relativos al desarrollo sostenible, el cambio climático y la reducción del riesgo de desastre la salud figura como uno de los ámbitos fundamentales de trabajo, que pasa por mejorar los niveles de preparación y respuesta ante los peligros biológicos y por conferir más resiliencia a los sistemas de salud. Para dotarse de mayor capacidad para prevenir amenazas emergentes y reemergentes, prepararse para ellas y darles respuesta, los países deben abordar los factores de riesgo desde una lógica multisectorial de Una sola salud que englobe los sectores de la sanidad animal, la salud humana y el medio ambiente. También es indispensable la cooperación transfronteriza, no en vano las enfermedades no conocen fronteras.


Subject(s)
Coronavirus Infections , Disasters , Pandemics , Pneumonia, Viral , Zika Virus Infection , Zika Virus , Animals , Betacoronavirus , COVID-19 , Climate Change , Emergencies/veterinary , Humans , Risk Management , SARS-CoV-2 , Zika Virus Infection/veterinary , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL